# Update on the Electron Cap-ECAL MC simulation

M. Battaglieri, V. Berdnikov, M. Bondì, C. Fanelli, Y. Furtelova, T. Horn, I. Larin, D. Romanov

# Description of the activity

Ultimate goal: Study of the Electron Cap ECAL performance and optimization of the detector

#### We are working on:

- ★ Implementation of the Electron Cap-ECAL in g4e:
  - Geometry
  - Digitization



- Reconstruction algorithm in EJANA framework Working in progress
- \* Analysis plugins in EJANA for study the Electron Cap ECAL performance Working in progress
  - Energy resolution
  - Effect of the Ecal resolution on reconstructed quantities like Q2, x
- ★ Al optimization based on the approach described in <a href="https://iopscience.iop.org/article/">https://iopscience.iop.org/article/</a> Working in progress 10.1088/1748-0221/15/05/P05009/meta

## g4e + ejana simulation and recon



A hit in electron endcap calorimeter. Simulated with g4e particle gun

https://gitlab.com/eic/escalate/plugins/calorimetry\_studies

# MC simulation: geometry

**Detector in g4e** Credit to D. Romanov

# MC simulation: geometry

#### Electron cap ECAL in g4e



#### Homogenous calorimeter:

- →Inner part:
  - Rin = 20 cm, Rout = 82 cm
  - PbWO4 crystals: 20 x 20 x 200 mm<sup>3</sup>
- →Outer part:
  - Rin =85 cm, Rout = 133 cm
  - DSB:Ce: 40 x 40 x 400 mm<sup>3</sup>

# MC simulation: Digitization

**Description of the response of a crystal coupled to a SiPM is implemented in g4e,** based on the experience gained with CLAS12-FT in HALLB and BDX:

- $\odot$  Estimate of the total deposited energy Etot =  $\Sigma E_i$
- Estimate the number of photons generated in the scintillator and reached the crystal surface:
   Nγ = Etot \* LY
- Estimate the number of photons hitting the sensor surface  $N\gamma = N\gamma^*$  (Asensor/Acrystal)
- Estimate the number of photo-electrons Npe taking into account the SiPM saturation effect:
   Npe = Ncells \* (1 exp (- Nγ \*PDE/Ncells)) (F. Acerbi et al. NiMA 926(2019)16
- Number of pe is extracted randomly according to a Poisson distribution with mean equal to Npe

## First results

The response of the inner part (PbWO4 +SiPM) to electrons was evaluated

#### Crystal:

Material: PbWO4

• Size: 2x2x20 cm<sup>3</sup>

• LY: 240 γ/MeV

#### SiPM:

• Area: 1.2 x 1.2 cm<sup>2</sup>

• pixel pitch: 25 um<sup>2</sup>

• PDE: 0.22



#### **Energy Resolution**



#### **Energy Resolution - CLAS12 FT**



**Energy resolution in agreement with expected value** 

## Reconstruction algorithm in EJANA framework

## Islreco reconstruction algorithms

- The main developer is Ilya Larin. Now the librarty is rewritten to C/C++ and publically available at: <a href="https://github.com/emcal/islreco">https://github.com/emcal/islreco</a>
- Island method clusterization is combined with common reconstruction algorythms
- Can be used for hybrid calorimeters
   (The main author has 20+ years of experience with hybrid calorimeters)
- Has many features. E.g. can receive X,Y coordinates from tracking for better cluster separation and more.
- Used in existing experiments:
  - SELEX (Segmented Large X baryon Spectrometer) Fermilab
  - PrimEx-II (JLab HallB)
  - PrimEx-D (JLab HallD)
  - Many publications based on reconstructions that embedded this library (<u>Fermilab list</u>, <u>JLab list</u>).



HyCal hybrid calorimeter with 1152 PbWO<sub>4</sub> modules 576 Pb-glass modules



#### Precision measurement of the neutral pion lifetime

American Association for the Advancement of Science By I. Larin, Y. Zhang, A. Gasparian, L. Gan, at all. 2020

## Analysis plugins in EJANA

Study the effect of the ECAL resolution on DIS reconstructed quantities:

### Electrons multiplicity (based on Beagle data)

events count: 39735

#### All electrons:

barrel : 24228

e cap : 29006

ion cap : 5503

#### Recoil only electrons:

barrel : 11945

e cap : 27810

ion cap : 2



**Credit to D. Romanov** 

## Analysis plugins in EJANA

Study the effect of the ECAL resolution on DIS reconstructed quantities:



Resolution in Q2 e X related to the angle and energy resolution

- Reconstructed kinematic variables calculated solely from the scattered e- (EM method)
- $\mathbf{Q}^2_{\mathsf{EM}}$  and  $\mathbf{X}_{\mathsf{EM}}$  are calculate using the e- information (E,  $\mathbf{\theta}$ ) from the tracks no the reconstructed ones (not yet!).

# Summary

- ★ Synergy between "R&D on Homogeneous Calorimeter Materials for EIC using Crystals and Glasses" group and EIC Software group
- ★ Implementation of the Electron Cap ECAL in g4e is ready.
- ★ Calorimeter reconstruction will be soon releasing.
- \* Analysis plugins under development.
- As soon as the previous items will be completed, the optimization activity based on AI will start